44 research outputs found

    Impulse radio ultra wideband over fiber techniques for broadband in-building network applications

    Get PDF
    In recent years, the demand for high bandwidth and mobility from the end users has been continuously growing. To satisfy this demand, broadband communication technologies that combined the benefit of both wired and wireless are considered as vital solutions. These hybrid optical wireless solutions enable multi-Gbit/s transmission as well as adequate flexibility in terms of mobility. Optical fiber is the ideal medium for such hybrid solution due its signal transparency and wide bandwidth. On the other hand, ultra wideband(UWB) radio over optical fiber technology is considered to be one of the key promising technologies for broadband communication and sensor network applications. The growing interest for UWB is mainly due to its numerous attractive features, such as low power spectral density, tolerance to multipath fading, low probability of interception, coexistence with other wireless services and capability of providing cost-effective > 1 Gb/s transmission. The main idea of UWB over fiber is to deliver UWB radio signals over optical channels, where the optical part serves as a backbone communication infrastructure to carry the UWB signal with a bandwidth of several GHz. This enables multiple novel applications such as: range extension of high speed wireless personal area networks (WPANs), low cost distributed antenna systems, secure and intelligent networks, or delivering broadband services to remote areas. In particular, this thesis deals with novel concepts on shaping and generation of IR-UWB pulses, theoretical and experimental demonstrations over different fiber types, routing of integrated wired/wireless IR-UWB services and effect of fiber types on ranging/localization of IR-UWB-over-fiber systems. Accordingly, this thesis investigates techniques for delivery of high data rate wireless services using impulse radio ultra wideband (IR-UWB) over fiber technology for both access and in-building network applications. To effectively utilize the emission mask imposed for UWB technologies by the Federal Communications Commission(FCC), novel pulse shaping techniques have been investigated and experimentally demonstrated. Comparison of the proposed pulses with conventional ones in terms of the compliance to the FCC-mask requirements, spectral power efficiencies and wireless coverage has been theoretically studied. Simple and efficient optical generation of the new pulse has been experimentally demonstrated. Furthermore, performance evaluation of 2 Gb/s transmission of IR-UWB over different types of fiber such as 25 km silica single-mode, 4.4 km silica multi-mode and 100 m plastic heavily-multi-mode fiber have been performed. To improve the functionalities of in-building networks for the delivery of wireless services; techniques that provide flexibility in terms of dynamic capacity allocation have been investigated. By employing wavelength conversion based on cross-gain modulation in optical semiconductor amplifiers(SOA), routing of three optical channels of IR-UWB over fiber system has been experimentally realized. To reduce the cost of the overall system and share the optical infrastructure, an integrated testbed for wired baseband data and wireless IR-UWB over 1 km SMF-28 fiber has been developed. Accordingly, 1.25 Gb/s wired baseband and 2 Gb/s wireless IR-UWB data have been successfully transmitted over the testbed. Furthermore, to improve the network flexibility, routing of both wired baseband and wireless signals has been demonstrated. Additionally, the ranging and localization capability of IR-UWB over fiber for in-door wireless picocells have been investigated. The effect of different fiber types (4 km SMF, 4.4 km GI-MMF and 100 m PF GI-POF) on the accuracy of the range estimation using time-of-arrival (ToA) ranging technique has been studied. A high accuracy in terms of cm level was achieved due to the combined effect of high bandwidth IR-UWB pulses, short reach fiber and low chromatic dispersion at 1300nm wavelength. Furthermore, ranging/ localization using IR-UWB over fiber system provides additional benefit of centralizing complex processing algorithms, simplifying radio access points, relaxing synchronization requirement, enabling energy-efficient and efficient traffic management networks. All the concepts, design and system experiments presented in this thesis underline the strong potential of IR-UWB for over optical fiber(silica and plastic) techniques for future smart, capacity and energy-efficient broadband in-building network applications

    Optical generation of IR-UWB pulse based on weighted sum of modified doublets

    Get PDF
    We propose a relatively simple optical generation concept for impulse radio ultra wideband (IR-UWB) pulse over fiber transmission using a weighted sum of a modified doublet with its inverted and delayed version. The generated pulses not only fi4ly comply with the FCC spectral mask but also are highly power efficient in the available spectrum. We verified our approach using both simulation and experimental demonstration. The concept has a potential to be integrated with other optical functions on a compact optical chip, making it very suitable for wide UWB deployment for highspeed wireless access at low costfor in-building network applications

    Novel generation and transmission of 2 Gbps impulse radio ultra wideband over MMF for in-building networks application

    Get PDF
    We propose novel generation technique of IR-UWB pulse by linearly combining two monocycles using different pulse shapes. We experimentally demonstrate DSP based BER measurement of 2 Gbps IR-UWB over multimode fiber for in-building networks application.</p

    Novel Generation and Transmission of 2 Gbps Impulse Radio Ultra Wideband over MMF for In-Building Networks Application

    Full text link
    We propose novel generation technique of IR-UWB pulse by linearly combining two monocycles using different pulse shapes. We experimentally demonstrate DSP based BER measurement of 2 Gbps IR-UWB over multimode fiber for in-building networks application

    Simultaneous generation and routing of millimetre-wave signals exploiting optical frequency multiplication

    Get PDF
    Exploiting an integrated micro-ring resonator, the simultaneous generation and routing of millimetre-wave signals by optical frequency multiplication is demonstrated for in-building networks. Error Vector Magnitude <5% is achieved for up to 120Mb/s 64-QAM at 39.6 GHz carrier frequency

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. METHODS: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. FINDINGS: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. INTERPRETATION: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    Experimental demonstration of 2 Gbps IR-UWB over fiber using a novel pulse generation technique

    No full text
    We propose novel generation technique of IR-UWB pulse by combining two monocycles using different pulse-shaping factors. We experimentally demonstrate DSP based BER measurement of 2 Gbps IR-UWB over 25 km single-mode fiber for access networks

    Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses

    No full text
    We propose a new and power-efficient impulse radio ultawideband (IR-UWB) pulse design concept. The proposed concept is based on a linear sum of modified doublet pulses. The proposed concept is both simulated and experimentally demonstrated. The experimental demonstration employs a photonic scheme that generates the designed pulse using two main steps, mainly optical shaping and differential detection. The optical shaping is performed using a single electro-optic modulator biased in the nonlinear portion of its transfer function, and the differential detection is performed using a balanced photodetector. The generated IR-UWB pulse is fully Federal Communications Commission compliant, even in the highly power-restricted global positioning system band. The proposed optical scheme has potential to be integrated on a compact optical chip and thus suitable for reliable, low-cost, high-speed, short-range UWB wireless access, such as in-building networks

    Remote in-door Ranging System Using Impulse Radio Ultra Wideband RoF Techniques

    No full text
    We propose and experimentally demonstrate an Impulse-Radio Ultra-wideband Radioover-Fiber (IR-UWB-RoF) indoor ranging systems with sub-cm level accuracy. To minimize the cost of the system, reduce power consumption of receiver architecture and simultaneously achieve a better FCC-mask compliance, we employ a novel pulse shaping technique of IR-UWB pulse and an energy detector receiver architecture with a sub-sampling frequency capability. The effect of different fiber types (SMF and MMF) and fiber lengths on the ranging accuracy are studied using ToA ranging techniques. The proposed system has a potential for low cost in-building networks application to provide indoor localization with excellent accuracy

    Converged IR-UWB wireless and wired baseband access for in-building network applications, 1-2 December 2011, Ghent, Belgium

    No full text
    We propose a converged integration of impulse radio ultra-wideband (IR-UWB) wireless and wired baseband access using a single optical carrier. To optimally share the optical carrier, we employ a novel IR-UWB pulse, which has low power spectral density in the low frequency components (&lt;2GHz);better FCC- mask compliance and higher power efficiency compared to conventional pulses. Using a 10 GHz optical system, we experimentally demonstrate 1.25Gbps (DC-1.25 GHz) wired baseband and 2Gbps of IR-UWB (3.1-10.6 GHz) wireless access over 1km SMF-28 fiber. The concept has potential for converged high-speed wireless and wired access at low cost for inbuilding network applications
    corecore